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Abstract
The COVID-19 pandemic has highlighted the power of using
computational methods for virtual drug screening. However,
the molecular search space is enormous and protein docking
methods are still computationally intractable without access
to the world’s largest supercomputers. Instead, researchers
are using AI methods to help guide docking campaigns. In
such approaches, a lightweight surrogate model is trained
and then used to identify promising candidates for screening.
We present ParslDock, a Python-based pipeline using the
Parsl parallel programming library and the K-Nearest Neigh-
bors machine learning model to screen a huge molecular
space of molecules against arbitrary receptors. We achieved
a 38X speedup with ParslDock compared to a brute-force
docking approach.
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1 Introduction
Protein docking is a key computational method used in
molecular biology to predict the structure of protein com-
plexes formed when two or more proteins interact. Essen-
tially, protein docking involves simulating the process by
which proteins fit together or ‘dock’ to form a stable complex.
Docking scoring functions estimate the binding free energy
between a ligand and a protein. The lower the score, the
more energetically favorable the binding interaction.

A typical docking computation can take over 10 minutes
on 1-core; a typical workload involves multiple protein recep-
tors (e.g., we found studies with 15 receptors) with millions
of possible ligands to dock to (e.g., we found studies with
13M ligands), yielding a total compute complexity for a brute
force approach to be over 32M CPU-hours (3710 years in a
serial computation on a single core). [2]
We present ParslDock—a Python-based system to make

docking tractable on even modest computing systems. We
integrate machine learning (ML) methods to help simplify
and speed up the docking search process. We also make
use of parallel libraries to make use of high-performance
computing (HPC) systems with hundreds of cores.
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2 Proposed Solution
We propose ParslDock, an ML-based system that enables
scalable and flexible screening of molecules. We assume that
users provide a target receptor (in PDBQT format) and a
list of candidate molecules (as SMILES strings). We aim for
ParslDock to efficiently use allocated resources (e.g., from
parallel or distributed systems) combining ML models and
Monte Carlo Simulations.
We used AutoDock Vina (a leading docking implementa-

tion) that performs docking and utilizes a scoring function
and gradient-based optimization algorithm. [4]

We used the Parsl parallel programming library to execute
parts of the application in parallel. The power of Parsl lies
in its ability to manage and coordinate the execution of
tasks across a range of computing resources, from multicore
workstations to HPC systems. [1]

We used a K-Nearest Neighbor (KNN) model. [3] Each
molecule (a SMILES string) is converted into a Morgan Fin-
gerprint that is represented as a bit-vector. We computed the
euclidean distance matrix in the KNN as an all-to-all distance
matrix between every molecule to every other molecule’s
bit-vector representation. Our ultimate goal is to find a good
mapping between fingerprints and docking score.

The ParslDock pipeline (Figure 1) is composed of 7 stages:
1. Dataset 4M: Input data is a target receptor (PDBQT)

and a random list of 100K molecules (SMILES)
2. Data Format: Data preparation for AutoDock Vina

docking; SMILES string to PDB file to PDBQT file
3. Docking: Executes Monte Carlo simulations between

a protein receptor PDBQT file and a ligand PDBQT
file, yielding a binding-affinity score output

4. Morgan Fingerprints: Generated 128-bit vector with a
depth of 8 from a SMILES string [6]

5. Machine Learning: Morgan Fingerprints and docking
scores are paired as the input to KNNmodel to identify
correlations between fingerprints and docking scores

6. Dataset Top-4K: The top 4K ligands identified based on
the predicted docking scores (lowest binding-affinity
scores) of all 4M molecules

7. Docking: Runs Monte Carlo simulations on the Top-4K
subset of data to obtain a final list of top molecules
ordered by docking scores

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1. ParslDock pipeline

Most of these steps can be run concurrently across a set
of input molecules. We implement each step as a Parsl app
and establish dependencies between each step. This allows
us to scale out execution of each step across input data. All
our code and datasets can be found on Github. [5, 7]

3 Evaluation
We conduct experiments on two testbeds: an 8-core laptop
(8c-laptop) and a 192-core server (192c-server).

We used 4 million ligands from the 8 million ligand dataset
and performed docking against the 1IEP receptor protein.
This resulted in a new dataset that included 4M scores that
are represented in the Figure 2. The scores follow a normal
distribution. Our goal was to identify the top 0.1% of the
ligands based on the docking score (green line at -34.32).
KNN. We selected 100K random ligands and used the

docking scores to build a KNN model. We found that using
100K samples yielded highly accurate (99%+) results, this
was due to the unbalanced dataset (100 vs 99,900 samples).
We balanced the dataset by choosing 100 of each. Larger
samples did not significantly improve accuracy. We explored
different values of dataset sizes (from 10K to 10M samples),
and determined that 100K offers good enough accuracy of
87%. The number of neighbors we settled on for the KNN
was 5. Different values of 𝐾 did not yield significantly and
consistently better results.

Fingerprints. We conducted a hyperparameter search of
the “depth” (radius around atoms) and “size” (number of bits)
of fingerprint. Figure 3 shows the accuracy of the KNNmodel
on a training/testing dataset partitioned in 70% training and
30% testing. The best configuration (yellow) is when size
is 128 and depth is 8, achieving an accuracy of 87%. Note
that sub-optimal parameters for the Morgan Fingerprint can
easily yield under 50% accuracy.

(a) All scores (b) Zoomed view

Figure 2. Binding affinity score for docking of 4Mmolecules.

Figure 3. 2D-Heatmap showing KNN accuracy for finger-
print size vs depth

Performance. Figure 4 shows the performance of the en-
tire pipeline on two systems. Most stages used Parsl to paral-
lelize execution across the multicore systems in our testbed
(the only exception was the building of the KNN, which was
a significant part of the total pipeline). The speedup obtained
on ParslDock compared to the brute force docking of the
entire 4M ligands was 38X on the laptop and 37X on the
server. Note that the brute force results for both systems as
well as the ParslDock on the 16-HT system are estimated
based on a smaller sub-sample of results. The ParslDock on
the 384-HT system was computed in its entirety.
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Figure 4. ParslDock and Brute Force Docking end-to-end
pipeline execution time

4 Conclusions
Protein docking is a complex process that can be compu-
tationally expensive and time-consuming. ParslDock is a
Python-powered automated pipeline that uses ML to accel-
erate the docking process and reduce compute costs by up
to 38X. Our performance evaluation showed linear scalabil-
ity from an 8-core laptop to a 192-core server. With further
improvements, we believe we can bring down the compu-
tational requirements to the point that ParslDock will be
tractable on a modern day personal computer.
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