PARSLDOCK: ACCELERATING VIRTUAL DRUG SCREENING WITH PARALLELISM AND MACHINE LEARNING Johnny Raicu Glenbrook South High School Advisors: Valerie Hayot, Kyle Chard University of Chicago October 19, 2023 ParsIFest 2023 ### PROBLEM STATEMENT - What is the problem? - Identifying the "best" ligands from a dataset of molecules by combining simulation and ML algorithms on HPC resources - What are the challenges? - Machine learning model accuracy - Sampling efficiency - Computational cost - Complexity of docking workflow ### PROPOSED SOLUTION ### EXPERIMENTAL SETUP ### Programming Tools • Python 3.8.3, Parsl 1.3.0.dev0 ### • Libraries AutoDock Vina 1.2.3, Visual Molecular Dynamics 1.9.3, Scikit-learn 1.3.0, NumPy 1.24.3, Pandas 1.5.3 ### Hardware - 8c-laptop: 8-core Intel Core i9 CPU, 2.4GHz, 64GB DDR4, 8TB NVMe, MacOS 12.6.3 - 192c-server: 8x 24-core x86 Intel Xeon CPU, 2.1GHz, 786GB DDR4, 16TB SSD, Ubuntu Linux 22.04 ### Dataset • 0.9 GB file containing four million ligands stored as SMILES strings ### SMILES → PDB → PDBQT - **DB03048 SMILES**: c1c([nH]c(=O)[nH]c1=O)CC(=O)[O-] - DB03048 PDBQT: | REMARK | ∠ ac | ctive | tor | 510 | ns: | | | | | | | |---------|------|-------|------|-----|-------|-------------|-----------|--------|------|------|-----------| | REMARK | stat | us: | ('A' | fo | r Act | ive; 'I' fo | or Inacti | ve) | | | | | REMARK | 1 | Α | be: | twe | en at | oms: C2_2 | and C5_ | 9 | | | | | REMARK | 2 | Α | be: | twe | en at | oms: C5_9 | and C6_ | 10 | | | | | ROOT | | | | | | | | | | | | | ATOM | 1 | C1 | UNL | Χ | 1 | -0.335 | 1.388 | -0.190 | 1.00 | 0.00 | 0.100 A | | ATOM | 2 | C2 | UNL | Х | 1 | 0.260 | 0.195 | -0.322 | 1.00 | 0.00 | 0.029 A | | ATOM | 3 | N1 | UNL | Х | 1 | -0.405 | -0.944 | 0.070 | 1.00 | 0.00 | -0.312 N | | ATOM | 4 | C3 | UNL | Χ | 1 | -1.656 | -0.960 | 0.616 | 1.00 | 0.00 | 0.327 A | | ATOM | 5 | 01 | UNL | Х | 1 | -2.225 | -1.982 | 0.991 | 1.00 | 0.00 | -0.247 OA | | ATOM | 6 | N2 | UNL | Х | 1 | -2.264 | 0.262 | 0.718 | 1.00 | 0.00 | -0.275 N | | ATOM | 7 | C4 | UNL | Х | 1 | -1.696 | 1.454 | 0.373 | 1.00 | 0.00 | 0.251 A | | ATOM | 8 | 02 | UNL | Χ | 1 | -2.276 | 2.528 | 0.510 | 1.00 | 0.00 | -0.268 OA | | ATOM | 9 | Н2 | UNL | Х | 1 | 0.132 | -1.821 | 0.056 | 1.00 | 0.00 | 0.170 HD | | ATOM | 10 | Н3 | UNL | Χ | 1 | -3.183 | 0.278 | 1.125 | 1.00 | 0.00 | 0.173 HD | | ENDROOT | | | | | | | | | | | | | BRANCH | 2 | 11 | | | | | | | | | | | ATOM | 11 | C5 | UNL | Х | 1 | 1.637 | 0.025 | -0.910 | 1.00 | 0.00 | 0.170 C | | BRANCH | 11 | 12 | | | | | | | | | | | ATOM | 12 | С6 | UNL | Х | 1 | 2.526 | -0.888 | -0.063 | 1.00 | 0.00 | 0.178 C | | ATOM | 13 | 03 | UNL | Х | 1 | 2.096 | -2.074 | 0.067 | 1.00 | 0.00 | -0.648 OA | | ATOM | 14 | 04 | UNL | Х | 1 | 3.580 | -0.357 | 0.385 | 1.00 | 0.00 | -0.648 OA | | ENDBRAN | CH 1 | .1 1 | 2 | | | | | | | | | | ENDBRAN | СН | 2 1 | 1 | | | | | | | | | | TORSDOF | 2 | ### Scoring function : vina Rigid receptor: liep_receptor.pdbqt Ligand: DB03048-0.pdbqt Grid center: X 15.614 Y 53.38 Z 15.455 Grid size : X 20 Y 20 Z 20 Grid space : 0.375 Exhaustiveness: 32 CPU: 32 Verbosity: 1 Computing Vina grid ... done. Performing docking (random seed: 1849697511) ... 0% 10 20 30 40 50 60 70 80 90 100% ************* ### | + | +- | +- | | |----|--------|--------|-------| | | -6.36 | | | | 2 | -6.298 | 2.329 | 4.576 | | 3 | -6.174 | 2.1 | 2.931 | | 4 | -6.069 | 0.9309 | 1.116 | | | -5.979 | 1.92 | 4.843 | | 6 | -5.974 | 1.879 | 4.509 | | | -5.96 | 1.979 | 4.329 | | 8 | -5.932 | 2.677 | 4.55 | | | -5.896 | 2.014 | 3.215 | | 10 | -5.827 | 1.756 | 2.051 | 3.1626994609832764: docked 1/1 liep_receptor.pdbqt to DB03048 -6.36 dock DB03048 3.1565709114074707 -6.36 Elapsed time run: 3.1630148887634277 seconds ### **DOCKING** Ligand (DB03048) to Receptor (1iep) ### BRUTE FORCE DOCKING ### MACHINE LEARNING ### SMILES AND FINGERPRINTS ### Hydroxychloroquine SMILES String ### Example: CCN(CCCC(C)NC1=C2C=CC (=CC2=NC=C1)CI)CCO ### **Explanation**: The simplified molecular-input line-entry system (SMILES) uses chemical notation to represent the structure of a molecule visualized in 2D below. ### Hydroxychloroquine Fingerprint ### Example: ### Explanation: Molecular fingerprints are bit-vectors that help a machine learning model map a molecule description to a docking score. ### OPTIMIZING MACHINE LEARNING PARAMETERS - KNN performance is sensitive to Morgan Fingerprint parameters (size and depth) - Significantly better performance is achieved at a bit vector size of 128 and depth of 8 ### PARSLDOCK PERFORMANCE - Up to 38X speedup on ParslDock vs. Brute Force Docking - Linear scalability from 8-core laptop to 192core server - Docking (yellow) consumes the most compute time at 97% ### CONCLUSION - ParslDock: A Python-powered automated pipeline that uses Parsl and machine learning to accelerate the docking process, efficiently utilize compute resources, and reduce the time to discovery - ParsIDock achieves 38X speedup in performance that makes it possible to execute the virtual drug screening pipeline on a personal computer - Submitted a poster to IEEE/ACM SuperComputing/SC 2023 ### Navigating the Molecular Maze: A Python-Powered Approach to Virtual Drug Screening John Raicu [†] Valerie Hayot-Sasson (Advisor) [†] Kyle Chard (Advisor) [†] Ian Foster (Advisor) [†] †University of Chicago †Argonne National Laboratory #### Abstract The COVID-19 pandemic has highlighted the power of using computational methods for virtual drug screening. However, the molecular search space is enormous and the common protein docking methods are still computationally intractable without access to the world's largest supercomputers. All methods provide a powerful new tool to help guide docking campaigns. In such approaches, a lightweight surrogate model is trained and then used to identify promising candidates for screening. We present ParsIDock, a Python-based pipeline using the ParsIp parallel programming library and the K-Nearest Neighbors machine learning model to screen a huge molecular space of molecules against arbitrary receptors. We achieved a 38X speedup with ParsIDock compared to a brute-force docking approach. #### Problem Statement What is Protein Docking? Predicting the optimal binding conformation of a protein receptor and ligand using a binding affinity scoring function - What are the challenges? Machine learning model accuracy, sampling efficiency, and computational cost and complexity of docking workflow - What is the problem? Identify the "best" ligands from a large dataset of potential molecules by efficiently combining simulation and machine learning algorithms on high performance computing resources ### Background #### Hydroxychloroquine SMILES String #### Example: CCN(CCCC(C)NC1=C2C=CC (=CC2=NC=C1)CI)CCO #### Explanation: The simplified molecular-input line-entry system (SMILES) uses chemical notation to represent the structure of a molecule visualized in 2D below. #### Hydroxychloroquine Fingerprint ### Example: Molecular fingerprints are bit-vectors that help a machine learning model map a molecule description to a docking score. ### Experimental Setup ### Programming Tools - Python 3.8.3 implements the computational pipeline - Parsl 1.3.0.devO parallelizes various stages of the computational pipeline - Jupyter Notebook 6.5.4 runs the Python code of the pipeline #### Librarios - AutoDock Vina 1.2.3 utilizes a scoring function and gradient-based optimization algorithm - Visual Molecular Dynamics 1.9.3 visualizes and analyzes molecular simulations; Py3Dmol 2.0.3 enables interactive 3D molecular visualization directly in web browser; Matplotlib was used for general visualization. - Scikit-learn 1.3.0 was used for the machine learning KNN implementation - NumPy 1.24.3 and Pandas 1.5.3 was used for general data processing and analysis #### Hardware - 8c-laptop: 8-core Intel Core i9 CPU, 2.4GHz, 64GB DDR4, 8TB NVMe, MacOS 12.6.3 - 192c-server: 8x 24-core x86 Intel Xeon CPU, 2.1GHz, 786GB DDR4, 16TB SSD, Ubuntu Linux 22.04 #### Dataset • 0.9 GB file containing four million ligands stored as SMILES strings #### Proposed Solution A python-powered automated pipeline that uses Parsl and machine learning to accelerate the docking process and improve resource utilization. ## Data Preparation for Docking SMILES PDB PDBQT Docking Machine Learning Machine Learning Machine Learning Data Set 4M - 1. Dataset 4M: four million ligands represented by SMILES strings - SMILES → PDB → PDBQT: To prepare the data for docking, the SMILES strings are converted into PDB files and then into PDBQT files - 3. **Docking:** Docking runs Monte Carlo simulations on the 1iep protein receptor PDBQT file with a ligand PDBQT file and outputs a binding-affinity score - 4. Molecular Fingerprints: Morgan fingerprints are generated as a 128-bit vector with a depth of 8 from a SMILES string. - Machine Learning: Morgan Fingerprints and docking scores are paired as the input to the machine learning model K-Nearest Neighbor (KNN) - 6. Dataset 4K: four thousand ligands with the best docking scores (lowest binding-affinity scores) - Docking: Runs docking simulations on a smaller optimal subset of data containing four thousand ligands instead of four million #### Results - KNN performance is sensitive to Morgan Fingerprint parameters (size and depth) - Significantly better performance is achieved at a bit vector size of 128 and depth of 8. - Up to 38X speedup on ParslDock vs. Brute Force Docking Linear scalability from 8-core laptop to 192-core #### Conclusions - ParsIDock: A Python-powered automated pipeline that uses ParsI and machine learning to accelerate the docking process, efficiently utilize compute resources, and reduce the time to discovery - ParsIDock achieves 38X speedup in performance that makes it possible to execute the virtual drug screening pipeline on a personal computer #### References - [1] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan Kumar, Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael Wilde, and Kyle Chard. Parsi: Pervasive parallel programming in python. In Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing, HPDC '19, page 25–36, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450366700. doi:10.1145/3307681.3325400. URL https://doi.org/10.1146/3307881.3325400. - [2] Austin Clyde, Thomas Brettin, Alexander Partin, Hyuriseung Yoo, Yadu Babuji, Ben Blaiszik, Andre Merzky, Matteo Turilli, Shantenu Jha, Arvind Ramanathan, et al. Protein-ligand docking surrogate models: A sars-cov-2 benchmark for deep learning accelerated virtual screening. arXiv preprint arXiv:2106.07936, 2021. - [3] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1):21–27, 1967. doi:10.1109/TIT.1967.1053964. - [4] Jerome Eberhardt, Diogo Santos-Martins, Andreas F Tillack, and Stefano Forli. Autodock vina 1.2. 0: New docking methods, expanded force field, and python bindings. Journal of chemical information and modeling, 61(8):3891–3898, 2021. ${\sf IEEE/ACM\ SuperComputing/SC\ Conference\ 2023,\ Colorado}$ ### ONGOING AND FUTURE WORK - ParsIDock to showcase ParsI support for fine grained parallelism joint work with Jamison Kerney (IIT) aiming for the ACM/IEEE International Symposium on Cluster, Cloud, and Internet Computing (CCGrid) 2024 - KNN relies on accurate distance metrics between samples - Explore various types of distance measures: Jaccard Coefficient, Tanimoto, Hamming Distance - Explore additional ML models: deep neural networks (brainstorming with lan Wang, MSOE) # PARSLDOCK PERFORMANCE DETAILS | Stage | # of Tasks | Time/task
(sec) | Parallelism | Total Time (sec) | |--|------------|--------------------|-------------|------------------| | SMI ==> PDB | 100000 | 0.264 | 384 | 69 | | PDB update | 100000 | 0.352 | 384 | 92 | | PDB ==> PDBQT | 100000 | 0.340 | 384 | 88 | | Docking(receptor, ligand) | 100000 | 634.459 | 384 | 165224 | | SMI ==> Fingerprint | 4000000 | 0.001 | 1 | 1425 | | Create KNN Model | 200 | 0.019 | 1 | 4 | | Test KNN Model (fingerprint ==> score) | 4000000 | 0.368 | 384 | 3836 | | Docking(receptor, ligand) | 4000 | 634.459 | 384 | 6609 |