
ParslDock:

A Python-Powered Approach to Virtual Drug

Screening

John Raicu1, Valerie Hayot-Sasson2, Kyle Chard2, and Ian Foster2

1Glenbrook South High School
2University of Chicago

Abstract

The COVID-19 pandemic has highlighted the power of using computa-
tional methods for virtual drug screening. However, the molecular search
space is enormous and protein docking methods are still computationally
intractable without access to the world’s largest supercomputers. Instead,
researchers are using AI methods to help guide docking campaigns. In
such approaches, a lightweight surrogate model is trained and then used
to identify promising candidates for screening. We present ParslDock, a
Python-based pipeline using the Parsl parallel programming library and
the K-Nearest Neighbors machine learning model to screen a huge molec-
ular space of molecules against arbitrary receptors. We achieved a 38X
speedup with ParslDock compared to a brute-force docking approach.

1 Introduction

Protein docking is a key computational method used in molecular biology to
predict the structure of protein complexes formed when two or more proteins
interact. This technique is vital in understanding biological processes and de-
signing therapeutic drugs. Essentially, protein docking involves simulating the
process by which proteins fit together or ‘dock’ to form a stable complex. This
is akin to finding the correct way two puzzle pieces fit together among myriad
possibilities.

Docking scoring functions estimate the binding free energy or affinity be-
tween a ligand and a protein. The lower the score, the more energetically favor-
able the binding interaction. The docking process is driven by several factors,
including shape complementarity, electrostatic attractions, and hydrophobic in-
teractions. As proteins are highly flexible and complex molecules, the problem
of predicting their interactions is computationally demanding.

A typical docking computation can take over 10 minutes on 1-core; a typical
workload involves multiple protein receptors (e.g., we found studies with 15

1



receptors) with millions of possible ligands to dock to (e.g., we found studies with
13M ligands), yielding a total compute complexity for a brute force approach to
be over 32M CPU-hours (3710 years in a serial computation on a single core).
[Clyde et al.(2021)]

2 Problem Statement

ParslDock aims to identify optimal ligands from a large dataset of potential
molecules by efficiently combining simulation (docking) and ML algorithms on
HPC resources. The goal is to reduce the computational complexity of the
brute force docking application through ML methods. Our simulation runs the
Docking application which aims to predict the optimal binding conformation
of a protein receptor and ligand using a binding affinity scoring function. The
main challenge is to identify a ML model that is sufficiently accurate to enable
the identification of the best ligands from a relatively small subset of ligand
dockings.

3 Proposed Solution

We propose ParslDock, an ML-based system that enables scalable and flexible
screening of molecules. We assume that users provide a target receptor (in
PDBQT format) and a list of candidate molecules (as SMILES strings). We
aim for ParslDock to efficiently use allocated resources (e.g., from parallel or
distributed systems) combining ML models and Monte Carlo Simulations.

3.1 Software

We used AutoDock Vina (a leading docking implementation) that performs
docking and utilizes a scoring function and gradient-based optimization algo-
rithm. [Eberhardt et al.(2021)]

We used the Parsl parallel programming library to execute parts of the
application in parallel. The power of Parsl lies in its ability to manage and
coordinate the execution of tasks across a range of computing resources, from
multicore workstations to HPC systems. Parsl’s programming model relies on
defining apps (to represent functions that can execute concurrently). Apps
return ’futures’, which are essentially placeholders for results that are computed
asynchronously. Parsl automates the management of these futures, effectively
handling task dependencies, synchronization, and data movement. Parsl allows
users to write code that is agnostic of the underlying computing infrastructure,
hence making scripts portable and scalable.[Babuji et al.(2019)]

3.2 Machine Learning Model

We used a K-Nearest Neighbor (KNN) model. [Cover and Hart(1967)] Each
molecule (a SMILES string) is converted into a Morgan Fingerprint that is

2



represented as a bit-vector.
The SMILES “CCN(CCCC(C)NC1=C2C=CC (=CC2=NC=C1)Cl)CCO”

represents the Hydroxychloroquine molecule. This SMILES string is converted
into the bit-vector “111001001111010111
1100111101101101111111100111111110000100110101”. We computed the eu-
clidean distance matrix in the KNN as an all-to-all distance matrix between
every molecule to every other molecule’s bit-vector representation. Our ulti-
mate goal is to find a good mapping between fingerprints and docking score.

‘

3.3 ParslDock Pipeline

The ParslDock pipeline (Figure 1) is composed of 7 stages:

1. Dataset 4M: Input data is a target receptor (PDBQT) and a random list
of 100K molecules (SMILES)

2. Data Format: Data preparation for AutoDock Vina docking; SMILES
string to PDB file to PDBQT file

3. Docking: Executes Monte Carlo simulations between a protein receptor
PDBQT file and a ligand PDBQT file, yielding a binding-affinity score
output

4. Morgan Fingerprints: Generated 128-bit vector with a depth of 8 from a
SMILES string [Pattanaik and Coley(2020)]

5. Machine Learning: Morgan Fingerprints and docking scores are paired as
the input to KNN model to identify correlations between fingerprints and
docking scores

6. Dataset Top-4K: The top 4K ligands identified based on the predicted
docking scores (lowest binding-affinity scores) of all 4M molecules

7. Docking: Runs Monte Carlo simulations on the Top-4K subset of data to
obtain a final list of top molecules ordered by docking scores

Data Set 4M

Data  Preparation for Docking

   SMILES   PDB   PDBQT Docking

Molecular
Fingerprints

Machine
Learning  Data

Set 4K

Docking

Figure 1: ParslDock pipeline

Most of these steps can be run concurrently across a set of input molecules.
We implement each step as a Parsl app and establish dependencies between each

3



step. This allows us to scale out execution of each step across input data. All
our code and datasets can be found on Github. [Raicu(2023)]

4 Software Stack, Testbeds, and Dataset

4.1 Software Stack

The Programming Tools we used involved Python 3.8.3 to implement the com-
putational pipeline. We used Parsl 1.3.0.dev0 to parallelize various stages of the
computational pipeline. We made extensive use of Jupyter Notebook 6.5.4 in
the development of ParslDock.

The main docking library we used was AutoDock Vina 1.2.3 which utilizes
a scoring function and gradient-based optimization algorithm. We used the
Visual Molecular Dynamics 1.9.3 application to visualize and analyze molecular
simulations. Finally, we used Py3Dmol 2.0.3 to enable interactive 3D molecular
visualizations. The machine learning library that implemented the KNN was
Scikit-learn; we made use of other popular scientific and data analysis libraries
in Python, such as NumPy, Pandas, and Matplotlib.

4.2 Testbeds

The Hardware we use includes two testbeds to evaluate ParslDock. We conduct
experiments on two testbeds: 8c-laptop and 192c-server. The laptop was a
MacBook Pro from 2019 with an 8-core Intel Core i9 CPU, 2.4GHz, 64GB
DDR4, 8TB NVMe, running MacOS 12.6.3. The server had 8x 24-core Intel
Xeon Sky Lake CPUs (for a total of 192-cores), 2.1GHz, 786GB DDR4, 16TB
SSD, running Ubuntu Linux 22.04.

4.3 Datset

The 0.9 GB Figshare Dataset we used contained 8 million ligands stored as
SMILES strings.

5 Evaluation

5.1 Docking Scores

We used 4 million ligands from the 8 million ligand dataset and performed
docking against the 1IEP receptor protein. This resulted in a new dataset that
included 4M scores that are represented in the Figure 2. The scores follow a
normal distribution and range from -187.3 to 46.65, with a median of -8.654.
Our goal was to identify the top 0.1% of the ligands based on the docking score
(green line at -34.32). All the ligand docking scores less than or equal to -34.32
were labeled as “best” while all docking scores higher than -34.32 were labeled
as “worst”.

4



5.2 KNN Model

Once we obtained the docking scores for the entire dataset, we selected 100K
random ligands and used the docking scores to build a KNN model as seen in
Figure 3. We first explored use of the entire 100K random samples, which yielded
surprisingly high accuracy results in the 99%+ range. Upon close inspection,
we found that our dataset had a minority class (100 samples) and a majority
class (99,900 samples). KNN are well known to perform poorly for unbalanced
datasets. We set out to balance it by pulling a random sample of size 100 from
the majority class of 99,900 samples.

Our final dataset we used to build the KNN was only 200 samples large,
representing two classes that were of equal size. We tried larger sample sizes,
but we did not see a significantly improved accuracy on the KNN testing data.
We found that a relatively small number of molecules are needed to build the
KNN while achieving good accuracy, so the O(n2 ∗d) time and space complexity
of KNN is tractable for modest values of n and d.

We balanced the dataset by choosing 100 of each. Larger samples did not
significantly improve accuracy. We explored different values of dataset sizes
(from 10K to 10M samples), and determined that 100K offers good enough
accuracy of 87%. The number of neighbors we settled on for the KNN was 5.
Different values of K did not yield significantly and consistently better results.

5.3 Molecular Fingerprints

We conducted a hyperparameter search of the ”depth” (radius around atoms)
and ”size” (number of bits) of fingerprint. Figure 4 shows the accuracy of
the KNN model on a training/testing dataset partitioned in 70% training and
30% testing. The best configuration (yellow) is when size is 128 and depth
is 8, achieving an accuracy of 87%. Note that sub-optimal parameters for the
Morgan Fingerprint can easily yield under 50% accuracy. One critical variable in
building the machine learning model was the input data: a Morgan Fingerprint

(a) All scores (b) Zoomed view

Figure 2: Binding affinity score for docking of 4M molecules.

5



Fingerprint 

Docking Score

SMILES

Fingerprint 

Docking Score

Fingerprint 

Docking Score

Fingerprint 

Docking Score

KNN
Machine Learning

Predicted Docking
Score

Predicted Docking
Score

SMILES TEST

BUILD

Figure 3: Machine Learning Workflow highlighting inputs and outputs

and a docking score.
The Morgan Fingerprint itself has two different parameters that significantly

changes the fingerprint contents: depth and length. ”Depth” typically refers to
the radius parameter used in generating the fingerprints. Morgan fingerprints
are circular fingerprints that capture local chemical environments around atoms
in a molecule. The depth of the fingerprint determines how far from each atom
the circular neighborhoods extend. By adjusting the depth parameter, you con-
trol the level of detail captured in the fingerprint. A larger radius captures more
extended structural patterns and interactions, while a smaller radius focuses on
local substructures.

The second parameter is “length” referring to the number of bits or dimen-
sions used to represent the fingerprint. Each bit in the fingerprint corresponds
to a specific substructure pattern or feature. The length of the fingerprint de-
termines the level of granularity at which the molecular structure is encoded.
In summary, the length of a Morgan fingerprint determines the dimensionality
of the binary representation used to capture the molecular structure’s features,
and it plays a role in balancing representation power and computational con-
siderations.

In order to identify the best fingerprint depth and size, we conducted a
hyperparameter search of different fingerprint length and depth and measured
the accuracy of the KNN model on a training/testing dataset partitioned in
70% training and 30% testing. The figure below shows the bright yellow square
where fingerprint size is 128 and depth is 8, achieving an accuracy of 87%. Note
that sub-optimal parameters for the Morgan Fingerprint can easily yield under
50% accuracy.

6



Figure 4: 2D-Heatmap showing KNN accuracy for fingerprint size vs depth

5.4 Performance

5.4.1 ParslDock vs Brute Force Docking

ParslDock is a Python-powered automated pipeline that uses machine learning
to accelerate the docking process. From the start (4 million molecules repre-
sented as SMILES strings) to the end (top-4k ligands with docking scores), we
evaluated the time taken to run the entire ParslDock pipeline on two systems:
an 8-core laptop and a 192-core server in Mystic (see Figure 5). We measured
the various stages of the pipeline, from all the data transformations to PDB and
PDBQT files, docking, machine learning building and testing, and final ligand
selection of the best ligands identified. Tasks ranged from less than 1 millisec-
ond (e.g. Morgan fingerprint generation), with many format conversions taking
about 300 milliseconds, to molecular docking that took on average 20 seconds to
complete. I used Parsl to parallelize execution across the multicore systems in
our testbed to ensure that the thousands to millions of tasks could be executed
in parallel, weather it was on my 8-core laptop, or on the 192-core server. A
computation that if done näıve, would have taken nearly 5 years to execute by
brute force on a personal laptop without parallelism, we were able to complete
the same workload on a large multi-core system with 192-cores in just 2 days.

Protein docking is a complex process that can be computationally expensive
and time-consuming. Even if a personal laptop was the only computing resource
one had access to, through the ParslDock pipeline that uses parallelism and
machine learning to prune the search space, a workload that originally would

7



have taken 5-year to complete could now be done in in 47 days on the same
hardware, or as little as 2 days on a 192-core server. The speedup obtained on
ParslDock compared to the brute force docking of the entire 4M ligands was
38X on the laptop and 37X on the server. Our performance evaluation showed
linear scalability from an 8-core laptop to a 192-core server.

Speedup
37X

Speedup
38X

~77 days

~1804 days

~2 days

~47 days

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

Brute Force
(384-HT)

ParslDock (384-
HT)

Brute Force
(16-HT)

ParslDock (16-
HT)

Ti
m

e 
(s

ec
)

ParslDock vs Brute Force Docking

SMI ==> PDB PDB update

PDB ==> PDBQT Docking(receptor.pdbqt, ligand.pdbqt)

SMI ==> Fingerprint Create KNN Model

Test KNN Model (fingerprint ==> score) Docking(receptor.pdbqt, ligand.pdbqt)

Figure 5: ParslDock and Brute Force Docking end-to-end pipeline execution
time

5.4.2 Parsl Optimizations

Key to this work is the workflow graph generated by ParslDock. Each task
consists of a molecule that is formatted and passed to a machine learning module
for inference. This generates a bag-of-tasks graph, such a task graph is highly
parallelizable. We use this scientific application to demonstrate the improved
performance achieved by our optimizations.

ParslDock executed on the Mystic testbed mentioned previously. The dock-
ing simulation displayed Figure 6, Figure 7, and Figure 8 display runtime with
varying numbers of workers and batch size. The simulation was run across 100k
total molecules For serial, standard Parsl, and CDFK, the best runtimes are
achieved with the largest batch size. This suggests that there is still work to be
done to improve Parsl for fine-grained tasks.

Figure 6 shows the runtime of the docking simulation as a function of the

8



Figure 6: ParslDock runtime Serial

batch size using serial code. Using a batch size of 1000 molecules the serial code
achieves a runtime of around 35 seconds.

Figure 7 displays the runtime achieved by standard Parsl. Standard Parsl
achieves its lowest runtime using 8 workers with a batch size of 1000, 11s. With
standard Parsl using many workers or few workers returns a high runtime, 100
seconds.

Figure 8 shows the runtime achieved by CDFK Parsl. It scales linearly with
the number of workers used, plateauing with hundreds of workers. CDFK Parsl
with 128 workers and a batch size of 1000 simulates 100k molecules in 1.5
seconds. This runtime is 10x faster than standard Parsl’s lowest runtime and
30x faster than serial.

6 Future Work

We used a K-Nearest Neighbor (KNN) model. Each molecule (a SMILES string)
is converted into a Morgan Fingerprint that is represented as a bit-vector.
The SMILES “CCN(CCCC(C)NC1=C2C=CC (=CC2=NC=C1)Cl)CCO” rep-
resents the Hydroxychloroquine molecule. This SMILES string is converted into
the bit-vector “11100100111101011111001111011011011111111001111111100001
00110101”. We computed the euclidean distance matrix in the KNN as an all-to-
all distance matrix between every molecule to every other molecule’s bit-vector
representation. Our ultimate goal is to find a good mapping between fingerprints
and docking score.

We used the default distance metric, Euclidean Distance. Euclidean distance
is a general purpose distance metric that works for a variety of input datasets.
The Euclidean distance is commonly used for numerical data where the magni-
tude and continuous values of attributes matter. It calculates the straight-line

9



Figure 7: Standard Parsl

Figure 8: CDFK

10



distance between data points in a multidimensional space. Given that our in-
put dataset is a bit-vector (Morgan fingerprint), we could explore other distance
metrics such as Jaccard Coefficient, Tanimoto, or Hamming Distance. These
similarity metrics are typically used for sets or binary data, where each data
point can be thought of as a binary vector (0 or 1). Tanimoto in particular is
useful when dealing with sparse binary data, where the presence or absence of
features is more relevant than their values. I believe I can improve the machine
learning model’s accuracy by exploring different distance similarities as outlined
here.

Finally, KNN is a relatively simple machine learning model that is inher-
ently a non-parametric algorithm that assumes a constant decision boundary
in the feature space. Furthermore, KNN can be computationally expensive,
especially when dealing with large datasets, as it requires calculating distances
between the query point and all data points. Deep neural networks (DNNs) is
another machine learning algorithm that can automatically learn hierarchical
representations of data, discovering complex patterns and relationships in the
input features. The literature says that DNNs are typically more effective in
handling high-dimensional data or data with intricate features. Furthermore,
DNNs are capable of modeling non-linear relationships in data. DNN can be
more computationally efficient, especially with if we take advantage of parallel
processing on GPUs to speed up computations. In some cases, KNN may still
be a suitable choice, especially for smaller datasets or problems where inter-
pretability is crucial. However, DNNs could lead to a better predictive model
for tasks that require feature learning, non-linear modeling, and scalability.

7 Conclusions

Protein docking is a complex process that can be computationally expensive and
time-consuming. ParslDock is a Python-powered automated pipeline that uses
ML to accelerate the docking process and reduce compute costs by up to 38X.
Our performance evaluation showed linear scalability from an 8-core laptop to
a 192-core server. With further improvements, we believe we can bring down
the computational requirements to the point that ParslDock will be tractable
on a modern day personal computer, making virtual drug screening accessible
to all scientists around the world. Making this application more accessible will
no doubt make our world a safer place the next time we are faced with a global
pandemic, we will have millions of scientists ready to identify the best drug
candidate that will stop the pandemic in months, not years.

References

[Babuji et al.(2019)] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S.
Katz, Ben Clifford, Rohan Kumar, Lukasz Lacinski, Ryan Chard, Justin M.
Wozniak, Ian Foster, Michael Wilde, and Kyle Chard. 2019. Parsl: Per-

11



vasive Parallel Programming in Python. In Proceedings of the 28th Interna-
tional Symposium on High-Performance Parallel and Distributed Computing
(Phoenix, AZ, USA) (HPDC ’19). Association for Computing Machinery,
New York, NY, USA, 25–36. https://doi.org/10.1145/3307681.3325400

[Clyde et al.(2021)] Austin Clyde, Thomas Brettin, Alexander Partin, Hyun-
seung Yoo, Yadu Babuji, Ben Blaiszik, Andre Merzky, Matteo Turilli,
Shantenu Jha, Arvind Ramanathan, et al. 2021. Protein-ligand docking sur-
rogate models: A sars-cov-2 benchmark for deep learning accelerated virtual
screening. arXiv preprint arXiv:2106.07036 (2021).

[Cover and Hart(1967)] T. Cover and P. Hart. 1967. Nearest neighbor pattern
classification. IEEE Transactions on Information Theory 13, 1 (1967), 21–
27. https://doi.org/10.1109/TIT.1967.1053964

[Eberhardt et al.(2021)] Jerome Eberhardt, Diogo Santos-Martins, Andreas F
Tillack, and Stefano Forli. 2021. AutoDock Vina 1.2. 0: New docking meth-
ods, expanded force field, and python bindings. Journal of chemical infor-
mation and modeling 61, 8 (2021), 3891–3898.

[Pattanaik and Coley(2020)] Lagnajit Pattanaik and Connor W Coley. 2020.
Molecular representation: going long on fingerprints. Chem 6, 6 (2020),
1204–1207.

[Raicu(2023)] Johnny Raicu. 2023. ParslDock Repository.
https://github.com/johnny-raicu/ParslDock.

12


