NAVIGATING THE MOLECULAR MAZE: A PYTHON-POWERED APPROACH TO VIRTUAL DRUG SCREENING

Johnny Raicu Glenbrook South High School

Advisors: Valerie Hayot, Kyle Chard University of Chicago

August 15, 2023
Globus Labs, University of Chicago

ABOUT ME

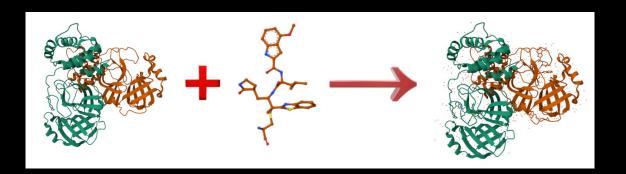
- Rising Senior at Glenbrook South
- Excited about the intersection of medicine and computing
- 10 Week Summer Internship in Globus Labs
- Advisors: Kyle Chard, Valerie Hayot

OVERVIEW

- COVID-19 pandemic brings urgency to accelerating virtual drug screening
- Brute force molecular search space is enormous
 - Finding the optimal drug candidates involves millions of Monte Carlo simulations that typically run for hundreds of seconds each → thousands of years of computing on a single core
- Lightweight machine learning surrogate models can reduce the search space between 10x and 100x while maintaining high accuracy

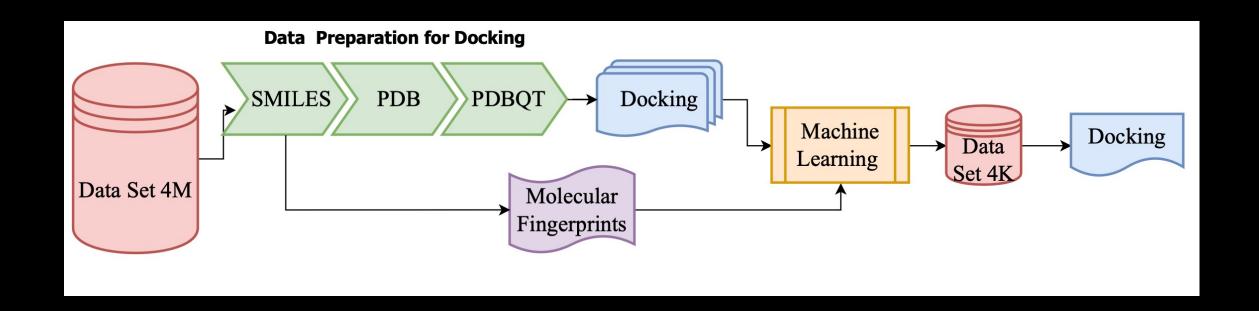
PROBLEM STATEMENT

- What is the problem?
 - Identifying the "best" ligands from a dataset of molecules by combining simulation and ML algorithms on HPC resources



- What are the challenges?
 - Machine learning model accuracy
 - Sampling efficiency
 - Computational cost
 - Complexity of docking workflow

PROPOSED SOLUTION



EXPERIMENTAL SETUP

Programming Tools

Python 3.8.3, Parsl 1.3.0.dev0

Libraries

 AutoDock Vina 1.2.3, Visual Molecular Dynamics 1.9.3, Scikit-learn 1.3.0, NumPy 1.24.3, Pandas 1.5.3

Hardware

- 8c-laptop: 8-core Intel Core i9 CPU, 2.4GHz, 64GB DDR4, 8TB NVMe, MacOS 12.6.3
- 192c-server: 8x 24-core x86 Intel Xeon CPU, 2.1GHz, 786GB DDR4, 16TB SSD, Ubuntu Linux 22.04

Dataset

• 0.9 GB file containing four million ligands stored as SMILES strings

SMILES -> PDB -> PDBQT

- **DB03048 SMILES**: c1c([nH]c(=O)[nH]c1=O)CC(=O)[O-]
- DB03048 PDBQT:

```
2 active torsions:
        status: ('A' for Active; 'I' for Inactive)
REMARK
REMARK
                  between atoms: C2 2 and C5 9
         2 A
                 between atoms: C5 9 and C6 10
REMARK
ROOT
ATOM
                                                                      0.100 A
                UNL X
                                -0.335
                                         1.388
                                               -0.190 1.00
                                                             0.00
                                               -0.322 1.00
MOTA
            C2
                                0.260
                                        0.195
                                                                      0.029 A
                UNL X
                                                             0.00
         3 N1 UNL X
                                                                     -0.312 N
                                -0.405
                                       -0.944
MOTA
                                                 0.070 1.00 0.00
                                                                      0.327 A
MOTA
            C3
                UNL X
                               -1.656
                                       -0.960
                                                 0.616
                                                       1.00
                                                             0.00
ATOM
            01
                               -2.225
                                       -1.982
                                                      1.00 0.00
                                                                     -0.247 OA
                UNL X
                                                 0.991
                                                                     -0.275 N
         6 N2 UNL X
                               -2.264
                                         0.262
                                                0.718 1.00 0.00
MOTA
                                                                      0.251 A
                               -1.696
                                        1.454
MOTA
                UNL X
                                                 0.373
                                                       1.00
                                                             0.00
MOTA
                               -2.276
                                        2.528
                                                       1.00
                                                                     -0.268 OA
            02
                UNL X
                                                 0.510
                                                             0.00
MOTA
            Н2
                UNL X
                                0.132
                                       -1.821
                                                 0.056
                                                       1.00 0.00
                                                                      0.170 HD
                                                                      0.173 HD
MOTA
         10 H3
                UNL X
                                -3.183
                                         0.278
                                                 1.125 1.00 0.00
ENDROOT
BRANCH
        2 11
                                                                      0.170 C
MOTA
            C5
                UNL X
                                 1.637
                                         0.025
                                               -0.910 1.00
                                                             0.00
BRANCH
       11 12
        12 C6 UNL X
                                                                      0.178 C
MOTA
                                 2.526
                                       -0.888
                                               -0.063 1.00 0.00
                                                                     -0.648 OA
MOTA
            03
                UNL X
                                 2.096
                                        -2.074
                                                 0.067
                                                       1.00
                                                             0.00
                                                                     -0.648 OA
MOTA
         14
            O4 UNL X
                                 3.580 -0.357
                                                 0.385 1.00 0.00
ENDBRANCH 11 12
ENDBRANCH
           2 11
TORSDOF 2
```

Scoring function : vina

Rigid receptor: liep_receptor.pdbqt

Ligand: DB03048-0.pdbqt

Grid center: X 15.614 Y 53.38 Z 15.455

Grid size : X 20 Y 20 Z 20

Grid space : 0.375
Exhaustiveness: 32

CPU: 32

Verbosity: 1

Computing Vina grid ... done.

Performing docking (random seed: 1849697511) ...

0% 10 20 30 40 50 60 70 80 90 100%

mode | affinity | dist from best mode

	(kcal/mol)	rmsd l.b.	rmsd u.b.
+	+	+	
1	-6.36	0	0
2	-6.298	2.329	4.576
3	-6.174	2.1	2.931
4	-6.069	0.9309	1.116
5	-5.979	1.92	4.843
6	-5.974	1.879	4.509
7	-5.96	1.979	4.329
8	-5.932	2.677	4.55
9	-5.896	2.014	3.215
1.0	-5 827	1.756	2 051

3.1626994609832764: docked 1/1 liep_receptor.pdbqt to DB03048 -6.36

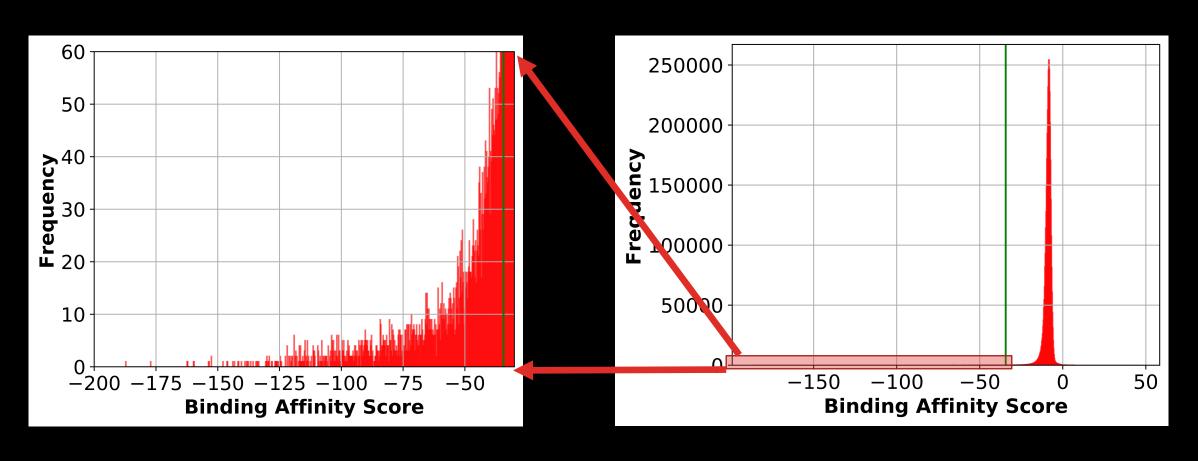
dock DB03048 3.1565709114074707 -6.36

Elapsed time run: 3.1630148887634277 seconds

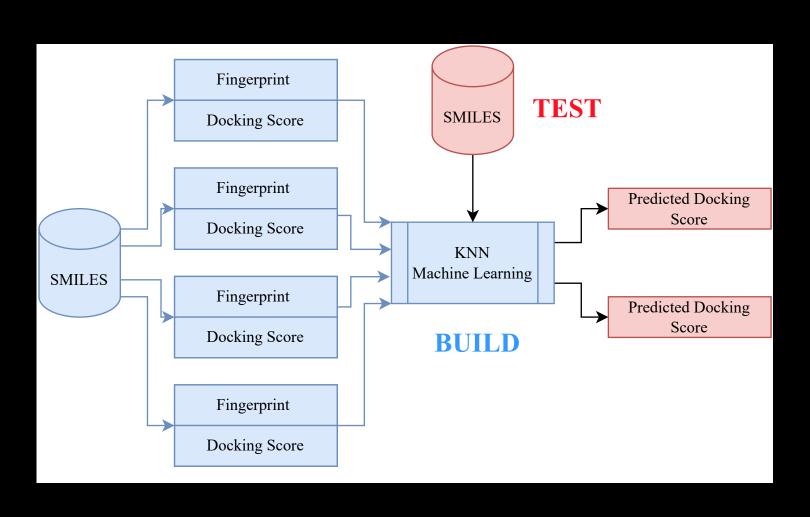
DOCKING

Ligand (DB03048) to Receptor (1iep)

BRUTE FORCE DOCKING



MACHINE LEARNING



SMILES AND FINGERPRINTS

Hydroxychloroquine SMILES String

Example:

CCN(CCCC(C)NC1=C2C=CC (=CC2=NC=C1)CI)CCO

Explanation:

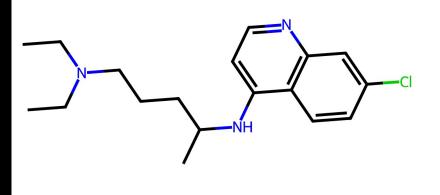
The simplified molecular-input line-entry system (SMILES) uses chemical notation to represent the structure of a molecule visualized in 2D below.

Hydroxychloroquine Fingerprint

Example:

Explanation:

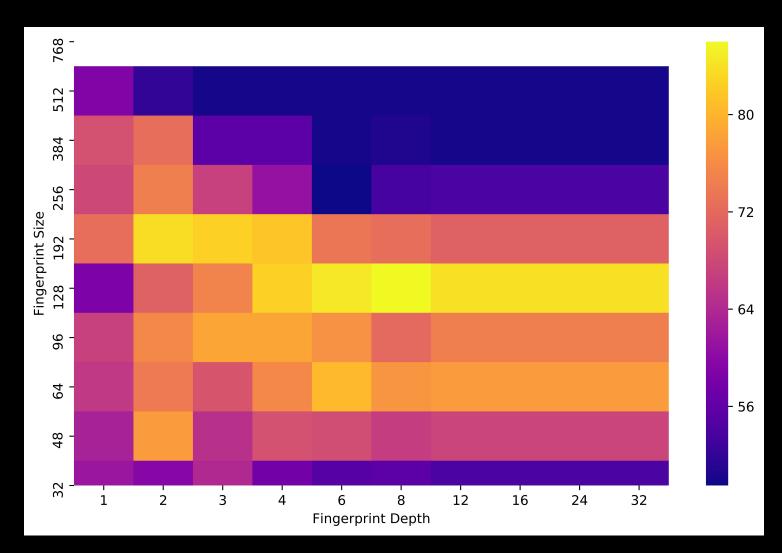
Molecular fingerprints are bit-vectors that help a machine learning model map a molecule description to a docking score.





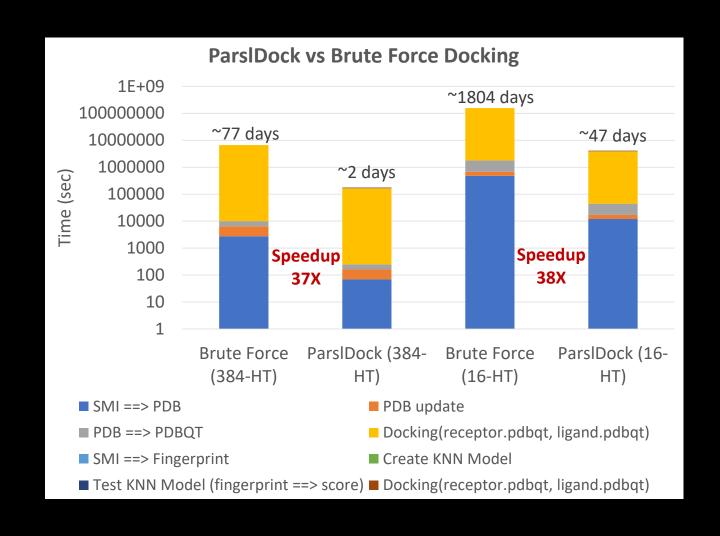
OPTIMIZING MACHINE LEARNING PARAMETERS

- KNN performance is sensitive to Morgan Fingerprint parameters (size and depth)
- Significantly better performance is achieved at a bit vector size of 128 and depth of 8



PARSLDOCK PERFORMANCE

- Up to 38X speedup on ParslDock vs.
 Brute Force Docking
- Linear scalability from 8-core laptop to 192core server
- Docking (yellow) consumes the most compute time at 97%



CONCLUSION

- ParsIDock: A Python-powered automated pipeline that uses ParsI and machine learning to accelerate the docking process, efficiently utilize compute resources, and reduce the time to discovery
- ParsIDock achieves 38X speedup in performance that makes it possible to execute the virtual drug screening pipeline on a personal computer
- Submitted a poster to IEEE/ACM SuperComputing/SC 2023

Navigating the Molecular Maze: A Python-Powered Approach to Virtual Drug Screening

John Raicu [†] Valerie Hayot-Sasson (Advisor) [†] Kyle Chard (Advisor) ^{† ‡} Ian Foster (Advisor) ^{† †}

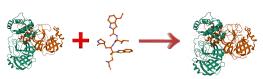
[†]University of Chicago [‡]Argonne National Laboratory

Abstract

The COVID-19 pandemic has highlighted the power of using computational methods for virtual drug screening. However, the molecular search space is enormous and the common protein docking methods are still computationally intractable without access to the world's largest supercomputers. All methods provide a powerful new tool to help guide docking campaigns. In such approaches, a lightweight surrogate model is trained and then used to identify promising candidates for screening. We present ParslDock, a Python-based pipeline using the Parsl parallel programming library and the K-Nearest Neighbors machine learning model to screen a huge molecular space of molecules against arbitrary receptors. We achieved a 38X speedup with ParsIDock compared to a brute-force docking approach.

Problem Statement

• What is Protein Docking? Predicting the optimal binding conformation of a protein receptor and ligand using a binding affinity scoring function



- What are the challenges? Machine learning model accuracy, sampling efficiency, and computational cost and complexity of docking workflow
- What is the problem? Identify the "best" ligands from a large dataset of potential molecules by efficiently combining simulation and machine learning algorithms on high performance computing resources

Background

Hydroxychloroguine SMILES String

Example:

CCN(CCCC(C)NC1=C2C=CC (=CC2=NC=C1)CI)CCO

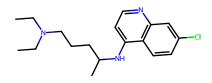
Explanation:

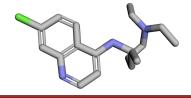
The simplified molecular-input line-entry system (SMILES) uses chemical notation to represent the structure of a molecule visualized in 2D below.

Example:

111001001111010111111001111011011 011111111001111111110000100110101

Molecular fingerprints are bit-vectors that help a machine learning model map a molecule description to a docking score.





Experimental Setup

Programming Tools

- Python 3.8.3 implements the computational pipeline
- Parsl 1.3.0.devO parallelizes various stages of the computational pipeline
- Jupyter Notebook 6.5.4 runs the Python code of the pipeline

- AutoDock Vina 1.2.3 utilizes a scoring function and gradient-based optimization algorithm
- Visual Molecular Dynamics 1.9.3 visualizes and analyzes molecular simulations; Py3Dmol 2.0.3 enables interactive 3D molecular visualization directly in web browser; Matplotlib was used for general visualization
- Scikit-learn 1.3.0 was used for the machine learning KNN implementation
- NumPy 1.24.3 and Pandas 1.5.3 was used for general data processing and analysis

Hardware

- 8c-laptop: 8-core Intel Core i9 CPU, 2.4GHz, 64GB DDR4, 8TB NVMe, MacOS 12.6.3
- 192c-server: 8x 24-core x86 Intel Xeon CPU, 2.1GHz, 786GB DDR4, 16TB SSD, Ubuntu Linux 22.04

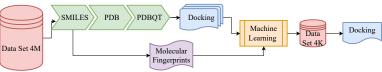
Dataset

• 0.9 GB file containing four million ligands stored as SMILES strings

Proposed Solution

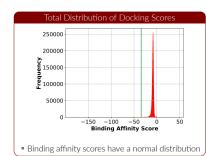
A python-powered automated pipeline that uses Parsl and machine learning to accelerate the docking process and improve resource utilization.

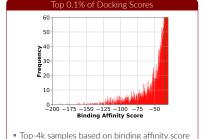
Data Preparation for Docking

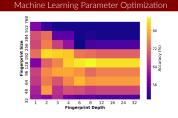


- 1. Dataset 4M: four million ligands represented by SMILES strings
- 2. SMILES -> PDB -> PDBQT: To prepare the data for docking, the SMILES strings are converted into PDB files and then into PDBOT files
- 3. Docking: Docking runs Monte Carlo simulations on the 1iep protein receptor PDBQT file with a ligand PDBQT file and outputs a binding-affinity score
- 4. Molecular Fingerprints: Morgan fingerprints are generated as a 128-bit vector with a depth of 8 from a
- 5. Machine Learning: Morgan Fingerprints and docking scores are paired as the input to the machine learning model K-Nearest Neighbor (KNN)
- 6. Dataset 4K: four thousand ligands with the best docking scores (lowest binding-affinity scores)
- 7. Docking: Runs docking simulations on a smaller optimal subset of data containing four thousand ligands instead of four million

Results

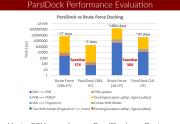






 KNN performance is sensitive to Morgan Fingerprint parameters (size and depth)

 Significantly better performance is achieved at a bit vector size of 128 and depth of 8.



- Up to 38X speedup on ParsIDock vs. Brute Force Docking
- Linear scalability from 8-core lapton to 192-core

Conclusions

- ParsIDock: A Python-powered automated pipeline that uses ParsI and machine learning to accelerate the docking process, efficiently utilize compute resources, and reduce the time to discovery
- ParsIDock achieves 38X speedup in performance that makes it possible to execute the virtual drug screening pipeline on a personal computer

References

- [1] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan Kumar, Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael Wilde, and Kyle Chard. Parsl: Pervasive parallel programming in python. In Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing, HPDC '19, page 25-36, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450366700. doi:10.1145/3307681.3325400. URL https://doi.org/10.1145/3307681.3325400.
- [2] Austin Clyde, Thomas Brettin, Alexander Partin, Hyunseung Yoo, Yadu Babuji, Ben Blaiszik, Andre Merzky, Matteo Turilli, Shantenu Jha, Arvind Ramanathan, et al. Protein-ligand docking surrogate models: A sars-cov-2 benchmark for deep learning accelerated virtual screening. arXiv preprint
- [3] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1):21-27, 1967. doi:10.1109/TIT.1967.1053964.
- [4] Jerome Eberhardt, Diogo Santos-Martins, Andreas F Tillack, and Stefano Forli. Autodock vina 1.2. 0: New docking methods, expanded force field, and python bindings. Journal of chemical information and modeling, 61(8):3891-3898, 2021.

IEEE/ACM SuperComputing/SC Conference 2023, Colorado

ONGOING WORK

- Containerize ParslDock for accessibility and ease of use
- ParsIDock to showcase ParsI support for fine grained parallelism joint work with Jamison Kerney (IIT) aiming for the WORKS Workshop at SC23

FUTURE WORK

- Screen ligands against the 7JKV protein receptor (brainstorming ideas with Aarvind Ramanathan, ANL)
- KNN relies on accurate distance metrics between samples
 - Explore various types of distance measures: Jaccard Coefficient, Tanimoto, Hamming Distance
- Explore additional ML models: deep neural networks (brainstorming with lan Wang, MSOE)

PARSLDOCK PERFORMANCE DETAILS

Stage	# of Tasks	Time/task (sec)	Parallelism	Total Time (sec)
SMI ==> PDB	100000	0.264	384	69
PDB update	100000	0.352	384	92
PDB ==> PDBQT	100000	0.340	384	88
Docking(receptor, ligand)	100000	634.459	384	165224
SMI ==> Fingerprint	4000000	0.001	1	1425
Create KNN Model	200	0.019	1	4
Test KNN Model (fingerprint ==> score)	4000000	0.368	384	3836
Docking(receptor, ligand)	4000	634.459	384	6609